Study on Driving Decision-Making Mechanism of Autonomous Vehicle Based on an Optimized Support Vector Machine Regression

نویسندگان

  • Junyou Zhang
  • Yaping Liao
  • Shufeng Wang
  • Jian Han
چکیده

Driving Decision-making Mechanism (DDM) is identified as the key technology to ensure the driving safety of autonomous vehicle, which is mainly influenced by vehicle states and road conditions. However, previous studies have seldom considered road conditions and their coupled effects on driving decisions. Therefore, road conditions are introduced into DDM in this paper, and are based on a Support Vector Machine Regression (SVR) model, which is optimized by a weighted hybrid kernel function and a Particle Swarm Optimization (PSO) algorithm, this study designs a DDM for autonomous vehicle. Then, the SVR model with RBF (Radial Basis Function) kernel function and BP (Back Propagation) neural network model are tested to validate the accuracy of the optimized SVR model. The results show that the optimized SVR model has the best performance than other two models. Finally, the effects of road conditions on driving decisions are analyzed quantitatively by comparing the reasoning results of DDM with different reference index combinations, and by the sensitivity analysis of DDM with added road conditions. The results demonstrate the significant improvement in the performance of DDM with added road conditions. It also shows that road conditions have the greatest influence on driving decisions at low traffic density, among those, the most influential is road visibility, then followed by adhesion coefficient, road curvature and road slope, while at high traffic density, they have almost no influence on driving decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

An Intelligence-Based Model for Supplier Selection Integrating Data Envelopment Analysis and Support Vector Machine

The importance of supplier selection is nowadays highlighted more than ever as companies have realized that efficient supplier selection can significantly improve the performance of their supply chain. In this paper, an integrated model that applies Data Envelopment Analysis (DEA) and Support Vector Machine (SVM) is developed to select efficient suppliers based on their predicted efficiency sco...

متن کامل

Using Vehicle-based Sensors of Driver Behavior to Detect Alcohol Impairment

Despite persistent efforts at the local, state, and federal levels, alcohol-impaired crashes still contribute to approximately 30% of all traffic fatalities. Although enforcement and educational approaches have helped to reduce alcohol-impaired fatalities, other approaches will be required to further reduce alcohol-related fatalities. This paper describes an approach that detects alcohol impair...

متن کامل

Predicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm

The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017